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Plastic deformation of polycrystals is investigated on the basis of single-crystal deformation. 
Slip is assumed to be the only deformation mechanism. Accordingly, an explicit tensile plastic 
stress-strain relation which contains the relevant microstructure parameters is obtained. As a 
simple application of the theoretical model, the effect of grain size on the flow stresses of 
polycrystals is studied. Finally, the general features of the present polycrystal model are sum- 
marized. Numerical results are obtained for face-centred cubic polycrystals, and the theoretical 
predictions are found to be in reasonable agreement with those of Taylor, Bishop, Hill and 
Hutchinson. 

1. I n t r o d u c t i o n  
When the physical mechanisms for the generation and 
interaction of dislocations within single crystals and 
those within polycrystals are similar, we expect that 
the plastic stress-strain curve of a polycrystal derived 
from the shear stress-slip strain curve of its con- 
stituent single crystal, based on Taylor's approach 
[1], should be reasonably accurate, especially when 
material constants of the single crystal are taken from 
the experimental results obtained under multi-slip 
conditions [2]. On the other hand, it has been observed 
that the yield stress, as well as the flow stress, of a 
polycrystal are significantly influenced by its grain size 
d. The well-known Hall-Petch relation [3, 4] states 
that 

0 o = o~ + k~d 1/2 (1) 

where a ~ and k~ are material constants. The subscript 
is to signify their dependence on the strain. It is 

noted that a different grain-size dependence has been 
observed and proposed [5, 6], but Equation 1 seems to 
be valid for a wide range of materials. In any event, the 
classical Taylor model cannot predict this grain-size 
influence. Even the more sophisticated models devel- 
oped later such as the KBW model [7, 8] or Hill's 
model [9], which take into account the elastic/plastic 
strain, fail to reveal this size influence. This is partly 
due to the inherent assumption of homogeneous strain 
within the spherical grains embedded in an infinite 
polycrystal matrix. 

To overcome this difficulty, Armstrong et al. [10] 
and Weng [11] assumed an inherent size dependence in 
the shear stress-slip strain curve of single crystals in 
order to bring out this phenomenon. An alternative 
approach was proposed by Chiang [12]. Basically, 
the later distinguishes two different regions in a poly- 
crystal, i.e. grain interiors and grain boundary 
regions. It was assumed that the grain interiors can be 
treated by the conventional Taylor approach (or its 

variations and generalizations), while the influence of 
the grain boundary regions is accounted for by a 
suitable interaction law. 

The objective of the present study is two-fold. First, 
a polycrystal model developed by Chiang and Weng 
[13] which is restricted to linear-hardening materials is 
to be generalized to take into consideration a non- 
linear (power type) hardening. The derivation of the 
new model is, in general, parallel to that outlined pre- 
viously [13]. Secondly, based on this polycrystal model 
in conjunction with the two-phase approach proposed 
by Chiang [12], a fairly general explicit expression 
for the flow stress of the polycrystal in terms of the 
relevant microstructure parameters is then obtained. 
In the final section, a summary of the features of this 
polycrystal is given. 

2. Theoretical  model 
2.1. Deformation of single crystals 
The plastic behaviour of a single crystal is most appro- 
priately expressed as the relationship between the 
resolved shear stress r and the slip strain 7 in the active 
slip system, i.e. 

r = f(7) (2) 

In general, a threshold value r0 can be identified at 
which extensive plastic deformation begins, i.e. the 
so-called Schmid law. Consequently, Equation 2 can 
usually be put into the form 

z = z 0 + g(7) (3) 

where z0 is the critical resolved shear stress. To be 
specific, we shall assume here that the function g can 
be adequately represented by a power-type form in 
conjunction with Taylor's isotropic hardening rule, so 

(i) 
that the resolved shear stress z on the ith currently 
active slip system relates to the total sum of the slip 
strains of all the independent slip systems within the 
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grain as 

z = % + h % + h(n~) ~ (4) 
j=l  

where n is the number of the active slip system, 
- (Zy=l (~)/n and h and fi are material constants. 

From the dislocation viewpoint, several theories have 
been proposed to determine the values of z0, h and fl 
in terms of more fundamental parameters (see e.g. 
[14]). However, the discussion of these theories is 
outside the scope of the present study and we shall 
omit it here. Instead, we treat these material con- 
stants as empirical constants which can be obtained 
by suitable experiments. It is also to be noted that 
Equation 4 is slightly different from that used by 
Weng [15]. 

2.2. The polycrystalline deformation model 
The polycrystal model developed by Chiang and 
Weng [13] will be reviewed. In particular, the emphasis 
will be placed on its extension to account for the cases 
where fi r I. For more detailed analysis and dis- 
cussion, especially in the transition state, interested 
readers are referred to Chiang and Weng [13]. 

We first replace Equation 4 with a linear form 

(i) 
z = Zo + h~(@) (5) 

where h, is chosen as 

h~ = h(np) ~-l (5') 

so that Equation 5 is identical to Equation 4. How- 
ever, it is noted that h s is no longer a material constant 
but depends on the strain. 

Kinematically, the strain of a single crystal can be 
related to the slip magnitude by 

~ (i) (j) 
e~l = vk~ 7 (6) 

j=l  

where Vk~ is the Schmid factor tensor. For the (1 1) 
component we have 

el 1 = ~ (j) (J) 1 Y ll ~ ~ /'/YII3~ "+" ~ (J~l (~: (7) 
. i=1  j = l  

(J) (~), 
where 7 = P + has been used. Proceeding in 
parallel with the analysis carried out by Chiang and 
Weng [13], we conclude that in the grain considered, 
the micro-constitutive equation can be represented by 

(1 - q)  hs (1  - -  6 )  
0"11 -- - -  Z" 0 + ell (8) 

YI 1 ~1 1 

where n is the contribution from the non-dominant 
" n (J) (J)\, 

stress components and 5 - (X}=j Vll 7l/Sj~. In com- 
parison with other rigorous numerical treatments, the 
errors due to neglecting q and 6 are found to be 
quite small. We conclude that such approximations 
are, in fact, "compatible" with the self-consistent 
formulation which accounts for the interaction of the 
grains by assuming 

all = 611 + A#(~,j -- eli) (9) 

where all and (~11 are  the (1 1) components of stress 
tensors of grains and the polycrystal, respectively; el 
and ~l i are their respective plastic strains, # is the shear 
modulus and A is the constraint tensor [16]. 

Following the solution method previously devel- 
oped [13], with c = 1, i.e. in the fully plastic state, we 
arrive at 

where 

all = (1 -- @)-'(q~z 0 + 0A#~,l (lO) 

( ( ) o-i,=o (-')' 
Off) 

,=o v,--~l -~ll A# , /  / 

and ( } denotes the average over all grain orien- 
tations. It is noted that deviations (such as 6 and q) 
from the dominant component (here the (1 1) com- 
ponent) have been omitted in the derivation. 

Furthermore, it is noted that 

h ( e-~L I2 YI 
\ VII 1~ 1 

= h ( n p )  ~-1 

?,)~-i = h 
Yll 

(11) 
can be resolved into two c o m -  On the other hand, e I 

ponents, i.e. ~11 and e~. We write ell = ~11 -{- e~l 
where (rill } = O. Therefore 

ell = ~11(1 -t- 60) (12) 

where w ~ s'l 1/~l I. Note the (1 + w} = 1, so Equa- 
tion 11 becomes 

h s =  h(~_-1-~1)~-1(1_ 6)~-,(1 +co)~ -1 
\ -- V/1 f 

VI I /  
(13) 

the above approximation can be 
by considering the difference of the 

~ h  

The error due to 
roughly estimated 
energy dissipated between the actual deformation 
path, i.e. Equation 4, and the assumed linear path, i.e. 
Equation 5. When fl = 0.6, it has been found that the 
error is within 5% for ~ < 0.1 and is within 12% for 

< 0.2 [17]. From Equation 13 with definitions of 
and q5 from Equation 10', we then find that 

/ ( 1 hs ~ i + 1 ;  ~121 A-~ / I // 

: ( ~ @ l ) A ~ _  ( h : \  1 2 

( ' )  (+) ~ ~fl-1 
Vll 

( 1 \ ( A ~ )  
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TABLE I Values of (1/,~l~ "~) (upper) and (1/~11) ~+e (lower) 
for fcc polycrystals 

l+ /~  n 

1 2 3 4 5 

l 2.232 2.336 2.510 2.673 2.898 
2.232 2.336 2.510 2.673 2.898 

1.1 2.420 2.545 2.754 2.951 3.225 
2.419 2.543 2.752 2.949 3.223 

1.2 2.624 2,772 3.021 3.259 3.590 
2.621 2.768 3.017 3.255 3.585 

1.3 2.846 3.020 3.315 3.599 3.997 
2.840 3.013 3.308 3.590 3.988 

1.4 3.087 3.290 3.638 3.975 4.451 
3.077 3.280 3.627 3.961 4.435 

1.5 3.348 3.585 3.993 4.391 4.957 
3.335 3.570 3.977 4.370 4.933 

1.6 3.633 3.907 4.383 4.851 5.520 
3.613 3.886 4.360 4.822 5.487 

1.7 3.941 4.259 4.812 5.359 6.150 
3.915 4.231 4.780 5.320 6.103 

1.8 4.277 4.643 5.283 5.922 6.852 
4.243 4.605 5.241 5.869 6.789 

1.9 4.634 5.062 5.800 6.545 7.634 
4.597 5.013 5.746 6.476 7.551 

2 5.039 5.520 6.370 7.235 8.508 
4.982 5.457 6.300 7.145 8.398 

05 ~ ~ /(--1)i 1 ( 1 hs']' / 
,=o 

(1 > /h~\ 1 / h : \  ( 1 ~ 
= C + - 

-'[-( ~1~_2~ ) ( A ~ )  2 ~2('6' 1) - �9 �9 . 

( ~ l l >  (1 r (14) 

It is noted that the following approximations for fcc  
polycrystals have been observed, i.e. 

1 1 N 

N =  

N =  

1 1 N 

l~ 2 ,  . . . 

1, 2, . . .  (15) 
Finally, Equation 10 becomes 

( 1 >  I ( + >  (A-~)  ] (~1  1 = - -  "Co + d ~- J A#,~ 
YII  

= z0 + h~ ~ (16) 

Table I shows values of (1/~]] ~ )  and ((1/#~ ~)) ~+r for 
fc c crystals. Now we shall introduce a more concise 
notation rh to replace the cumbersome expression 
< I / v I 1 ) ,  SO Equation 16 can be written as 

(~11 = rn'c 0 4 -  rhl+'qh~;~ (17) 

It should be emphasized that the constraint factor A 

does not explicitly appear in the final macro- 
constitutive equation (Equations 16 or 17). However, 
this does not mean that A has no influence on the 
flow stress of the polycrystal. Its influence, in fact, 
indirectly affects the average number of active slip 
systems, n. 

3. Grain size effects 
In this section the two-phase model proposed by 
Chiang [12] will be used to discuss the grain size 
influence. Basically, we distinguish two regions in a 
polycrystal: (a) grain interiors V~ and (b) grain bound- 
ary regions Vg b. We assume that the analysis in the 
previous section is valid for V~, so 

6 c = fit'[" 0 n t- rpt l+/~hg;P (18) 

where 60 denotes the average stress in V~. Further- 
more, the average stress in V.gb can be accounted for 
through an "interaction" law similar to Equation 9, so 

('~gb = # 4- A#(~ - agb) (19) 

NOW, if we further assume that no plastic strain is 
allowed to relax the high stress concentration accumu- 
lated within Vg b, then ~gb = 0, i.e. 

ffgb = 6 + A#~ (20) 

Moreover, since 6 = f~#o + fgb6gb and f~ + fgb = 1 
wheref~ andfgb are the volume fractions of V~ and Vgb, 
respectively, so we obtain 

5 = f~Sc + fgb(6 + A#E) 

o r  

5 = #c + ~ A#~ 

It is noted that, in Equation 21, the only possible 
size-dependence factor is contained in the last term. 
To conform with the Hall-Petch relation, phenom- 
enologically we assume 

f gb  A = tea ,/2 (22) 
Z 

where c~ is a constant independent of grain size. Con- 
sequently, from Equations 18, 21 and 22 we conclude 
that 

# = fft'C0 q- rrtl+~h~/J 4- ~#g,d -1/2 (23) 

Comparing Equation 23 to Equation 1, we find that 
the Hall-Petch parameters are 

a~ = rhr0 + rhl+~h~ ~ 

and 

k~ = ~#~ (24) 

It is worth comparing the theoretical findings with 
available experimental results. For example, Gupta 
and Garofalo [18] have reported some experimental 
data for the Fe-Ti alloys. It is found that 

k~ ~ ~1/2 (25) 

In this case, from Equation 24 it is required that 

~ ,~-  I/2 (26) 

To the contrary, the experimental results of Jago and 
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Hassen [19] for polycrystalline iron reveal that k~ 
decreases with strain. Nevertheless several experi- 
mental results [20] including those of Jago and Hassen 
seem to support the conclusion that, above a certain 
range of plastic strain, k~ is relatively insensitive to 
strain. This suggests that asymptotically 

~ ~-I (27) 

At present, we are unable to settle this question. This 
is because of the phenomenological approach adopted 
in Equation 22. To resolve this problem, a consider- 
ation of the different micro-mechanisms operating in 
Vg b and V~ and their respective contributions to the 
macro-stress during plastic deformation (particularly 
the influence of temperature and solute atoms) cannot 
be avoided. Nevertheless, different dependences of 
upon ~ indicate that different micro-mechanisms must 
be responsible for such discrepancies. 

It is also a particular interest to note that the experi- 
mental data reviewed by Armstrong et al. [10] show 
that, at a specific strain, k/# is a constant (particularly 
for fc c crystals such as copper, aluminium and silver). 
This phenomenon can be inferred from Equation 24, 
since ~ depends on plastic strain only. 

4. Discussion and conclusions 
The original polycrystal model developed by Chiang 
and Weng has been extended to account for non- 
linear hardening and the grain-size effect. The specific 
features of this model are as follows. 

1. The final macro-constitutive Equation 23 is given 
explicitly in terms of the important micro-parameters 
such as the Taylor factor rh, slip modulus h, hardening 
exponent /3 and grain size d. The advantage of the 
present model over other purely numerical approaches 
lies in the fact that general qualitative and quantitative 
information can be analytically derived once and 
for all without repeatedly doing the same numerical 
studies for each and every case. 

2. For fcc  crystals without hardening, assuming 
n = 5, the present model predicts that the yield stress 
in pure tension and pure shear are [21] 

6 = 2.898% ~ = 1.699% (28) 

respectively. On the other hand, the results of Bishop 
and Hill [22] give 

5 = 3.06% ~ = 1.656% (29) 

The agreement between two theories is within 6%. For 
linear hardening, i.e. fl = 1, it is easy to deduce the 
hardening rate H of the polycrystal according to 
Equation 23. Assuming that the grain size effect is 
negligible and n = 5, we find that 

H = 8.508h 

The result is compared with that obtained by Hutchin- 
son [23] in Fig. 1. The difference between the two 
predictions over a wide range of h/# is within 5%. 
From the above comparisons, the present model is 
judged to be reasonably accurate. 

3. The accuracy of the present model indicates that 
the assumption of a negligible effect of deviation terms 
such as r/, 6 and ~o made in this model is justified. In 
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Figure 1 Ratio of  the polycrystal hardening rate H to the single- 
crystal hardening rate h as a function of h~# with/z being the shear 
modulus;  linear hardening assumed; Poisson's ratio v = l/3 used 
for Hutchinson 's  curve and n = 5 used for the present model. 

particular, this fact implies that the presence of r/, 6 
and o9 introduces only a secondary effect on the 
macro-plastic behaviour (especially in the fully plastic 
state) of the polycrystal. 

4. If the Hall-Petch parameter k~ is normalized with 
respect to the shear modulus #, according to Equation 
24 at a specific plastic strain, k/# should be a constant 
for the same class of crystalline structure since the 
relationship between e and ~ is probably identical for 
materials of the same crystallinity. The experimental 
data compiled by Armstrong et aI. [10] seem to 
support this conclusion. 

5. It must be emphasized that although only fcc  
polycrystalline metals are specifically considered in 
this paper and, in fact, the numerical results are cal- 
culated and presented only for this class of materials, 
the theoretical formulation and general analysis are 
believed to be valid for all types of crystallinity, par- 
ticularly for materials in which the slip mechanism is 
responsible for the major plastic deformation. 
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